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Main Points
• These neural network models represented a new clinical implication to measure orthodontic lines and angles through lateral photographs avoiding 

the risk of cephalometric radiation.
• The neural network models’ determination success was 0.99 for the training-test set ratio: 70-30%.
• A high level of accuracy was achieved as a result of a high correlation between the output and the target measurements of the networks.

ABSTRACT

Objective: This study aimed to design an artificial neural network for the prediction of cephalometric variables via a lateral photo-
graph in skeletal Class I, II, and III patterns.

Methods: A total of 94 patients were recruited for this prospective study, with an age range of 15-20 years (41 boys and 53 girls) seek-
ing orthodontic treatment. According to cephalometric analysis, using AutoCAD 21.0, they were allocated into three groups. Thirty 
with skeletal Class I (14 boys and 16 girls), 34 with skeletal Class II (14 boys and 20 girls), and 30 with skeletal Class III malocclusion (13 
boys and 17 girls) according to SNA, SNB, and ANB angles measured from cephalometric radiographs. The study includes (1) finding 
the correlation of the skeletal measurements between lateral profile photographs and cephalometric radiographs for the recruited 
patients and (2) designing a specific artificial neural networks for the assessment of skeletal factors via lateral photographs, these 
artificial neural networks are trained and tested with the total of 94 standard lateral cephalograms.

Results: This novel Network provided models of regression that can forecast the cephalometric variables through analogous photo-
graphic measurements with excellent predictive power R = 0.99 and limited estimation error for each malocclusion (Class I, II, and III).

Conclusion: This study suggests that artificial intelligence would be useful as an accurate method in orthodontics for the prediction 
of cephalometric variables and its performance was achieved by several factors such as proper selection of the input data, preferable 
generalization, and organization.
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INTRODUCTION

Globally, digital technology is becoming constantly one of the most important procedures in the clinical activi-
ties, and, thus, orthodontic digital revolution has been added more and more by orthodontists in their clinical 
practice. In orthodontics, successful treatment outcomes depend on accurate diagnosis through crucial diag-
nostic tools, which involves the development of a comprehensive database of patient’s information; the data is 
obtained from case history, clinical examination, and other diagnostic aids such as study casts, radiographs, and 
photographs.1
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An important part of diagnosis is to evaluate the skeletal factors 
via the records. Although cephalometric is the standard for iden-
tifying skeletal and dental craniofacial morphology in clinical 
practice, it might not be practical for large and repeated studies 
of epidemiology.2

Additionally, certain limitations to cephalometric radiographs 
are mentioned, for example, for patients exposed to a certain 
amount of radiation; a special source of radiation and a head 
holder are required to produce accurate images. For these 
reasons, it would be valuable to have a simple, safe, low-cost 
technology technique for assessing craniofacial morphology. 
Therefore standardized facial photography might be a useful 
tool for characterizing craniofacial anatomy since some aspects 
of facial appearance are related to the morphology of underlying 
hard tissues.3

Historically, facial photographs have been crucial parts of both 
pretreatment and posttreatment orthodontic records. Many 
orthodontic texts emphasized the use of orthodontic diagnosis 
and treatment planning. Graber (1946) reported that the pho-
tograph assumes even greater importance when dentists do 
not have equipment for taking cephalograms,4 therefore photo-
graphs can be considered as an essential diagnostic tool.5 From 
a lateral view, facial height and depth, the position of upper and 
lower lips, and the mandibular angle are the main factors that 
characterize facial patterns.6 Additionally, photographic analysis 
is an economical technique and safe method since the patient 
does not expose to potentially harmful radiation, it can be easily 
used to assess the head and face postures and compare those 
existing relationships among different craniofacial structures.7

Currently, many methods of multiple-factor analysis are appli-
cable in medicine, and among these artificial neural network 
(ANN) model analysis is very commonly used. Several studies 
have been done recently about artificial intelligence and bioin-
formatics.1,8 One way is machine learning using a neural network 
system.9

In a true sense, ANNs are clustering of the primitive artificial neu-
rons in a simple way, and this clustering is composed of multiple 
layers connected to one another. As shown in Figure 1, the first 

(input) layer consists of neurons that receive input from the exter-
nal surrounding. The output layer consists of neurons that com-
municate the output of the model to the external environment. 
Between these input and output layers, there are usually a num-
ber of hidden layers; however, Figure 1 is just a simple architec-
ture with only one intermediate (hidden layer). When the input 
layer receives the signal, its neurons produce output and this 
becomes an input to the other layers of the model. The process 
continues until a certain condition is fulfilled or until the output 
layer is invoked and fires its output to the external surrounding.10

Previously, in orthodontics, the use of ANN was recommended 
for the extraction11; the prediction of change in lip curvature12; 
and the prediction of arch form.13 They found that ANN model 
analyses were more accurate as compared to the conventional 
ones. To our knowledge, no studies have employed the ANN 
for the prediction of skeletal parameters for full orthodontic 
diagnosis using lateral photographs. Thus this study aimed to 
make a new artificial intelligence decision-making model for the 
diagnosis of skeletal factors only through photographs using 
neural network machine learning between different skeletal 
malocclusion.

METHODS

A total of 94 patients were recruited for this prospective study, 
with an age range of 15-20 years (43 boys and 51 girls) seeking 
orthodontic treatment. According to cephalometric analysis, 
using AutoCAD 21.0, they were divided into 3 groups. Thirty with 
skeletal Class I (14 boys and 16 girls, ANB angle 2°-4°), 34 with 
skeletal Class II (14 boys and 20 girls, ANB angle >4°), and 30 with 
skeletal Class III malocclusion (13 boys and 17 girls, ANB angle 
<2º), according to SNA, SNB, and ANB angles from cephalomet-
ric radiographs.

This study was conducted in the Al-Shaab specialized dental  
center in Baghdad. This study was approved by the Human 
Research Ethics Committee of College of Dentistry/Baghdad 
University (Iraq), (Approval No:168/2019). All subjects were given 
consent information sheets for inclusion before participation.

Inclusion criteria were patients with age range 15-20 years, 
no previous orthodontic or surgical treatment, all permanent 
teeth erupted up to the second molar included, no craniofacial 
trauma, and no congenital anomalies. Exclusion criteria were 
patients who were not fit for orthodontic treatment (i.e., poor 
oral hygiene and multiple caries), patients with systemic diseases 
or pregnant patients, and patients who were not within the age 
range. Standardized right profile photographs were taken for 
participants in the natural head position (NHP), the teeth in cen-
tric occlusion, and the lips at rest position. Eyeglasses, earrings, 
and necklaces were removed. Ensure that the patient’s forehead 
was clearly visible and the hair piled high on the head. Red indi-
cators dots were placed on anatomic landmarks (N’, A’, B’, Pog’, 
Mn’, Go’, Tr, Or’) obtained by palpation (Figure 2).

In order to obtain the NHP, a 75 × 30 cm mirror was hung on a 
tripod, which can be adjusted vertically according to the height 

Figure 1. The structure of an artificial neural network (25)



Turk J Orthod 2022; 35(2): 101-111 Ali et al. Artificial Neural Networks in the Prediction in Different Malocclusion

103

of the patients. Patients were asked to stand in a relaxed posi-
tion and to look at the reflection of their eyes in the mirror that 
is located 120 cm from the patient. The patient asked to bite on 
fox bite to record the occlusal plane by pointing two red dots on 
the cheek of the patient parallel to the plane of fox bite. Then, a 
straight line was easily drawn by connecting these two dots by 
AutoCAD software. A protractor was used to record the NHP angle 
by placing it on the tip of the nose and the soft tissue pogonion.14

Digital lateral cephalometric radiographs were taken with Sirona 
Orthophos XG (Dentsply company, NY, USA). Cephalometric 
radiographs were taken in the NHP with centric occlusion and 
rest position of the lips. In order to register the true vertical line, 
the nose rode was placed in front of the patient, in the midsagit-
tal plane, and the scale of the nose rode allowed later measure-
ments at life size (1 : 1). Natural head position angle was checked 
by a modified protractor, it was placed on the tip of the nose and 
the soft-tissue pogonion to check if the same position achieved 
during the photographic record had also been obtained during 
the radiographic record.14

Both digital photographic and radiographic records were ana-
lyzed with AutoCAD (21.0) (codename nautilus) software for 
Windows. A specific analysis was customized using the land-
marks defined for the purpose of this study (Figure 2). Traditional 
cephalometric angular and linear measurements included;

(A) Sagittal assessment: (1) Wits measurements indicate max-
illomandibular linear discrepancy; (2) ANB angle indicates  
maxillomandibular angular discrepancy; (3) FNP angle indicates 
facial angle; (4) N.ANS.Pog; and (5) N.ANS.B angles indicate 
angles of facial convexity.

(B) Vertical assessment: (6) Ar.Go.Me angle indicates gonial  
angle; (7) FMA angle indicates Frankfurt to mandibular plane 
angle; (8) OPA angle indicates Frankfurt to occlusal plane angle; 
(9) AFH indicates anterior facial height (N-Me); (10) LAFH indi-
cates lower anterior facial (ANS-Me) height; and (11) LPFH indi-
cates lower posterior facial height (Ar-Go) (15) and analogous 
photographic ones were used for sagittal and vertical assess-
ment which include (1) Wits’ measurement indicates soft-tissue 

maxillomandibular linear discrepancy; (2) A’N’B’angle indicates 
soft tissue maxillomandibular angular discrepancy; (3) FNP’angle 
indicates soft-tissue facial angle; (4) N’.Sn.Pog’; (5) N’.Sn.B’ angles 
indicate soft tissue angles of facial convexity for sagittal assess-
ment; (6) Tr.Go’.Me’ angle indicates soft tissue gonial angle; (7) 
FMA’ angle indicates soft tissue Frankfort to mandibular plane 
angle; (8) OPA’ angle indicates soft tissue Frankfort to occlusal 
plane angle; (9) AFH’ indicates soft tissue anterior facial height 
(N’-Me’); (10) LAFH’ indicates soft tissue lower anterior facial 
height (Sn-Me’); and (11) PFH’ indicates lower posterior facial 
height (Tr-Go’).15 All the measurements were calculated once the 
landmarks were properly identified on each record; these were 
previously scaled to life size. Inter- and intra-examiner calibra-
tions were performed on a sample of 27 subjects (15 boys and 
12 girls) for computerized analysis of facial morphology through 
radiographs and photographs.

All the data of the skeletal measurements that were calculated 
by AutoCad software in millimeter values had arranged in the 
excel program (Microsoft Office 2020) in the form of tables. The 
first table for Class I malocclusion, the second table for Class II 
malocclusion, and the third for Class III malocclusion, each table 
included 22 variables, 11 variables for the cephalometric radio-
graphs, and 11 variables for the lateral photographs.

In ANN programing, all the data of skeletal measurements had 
been copied into the MATLAB program (R2020a vs. 9.8.0/2020) 
from Microsoft Excel. The first neural network was for the Class I 
malocclusion measurements and the second and the third neu-
ral networks were for Class II and III malocclusion measurements 
respectively. The data were randomly allocated into 70% of data 
for training (Ptrian = 0.7) and 30% for testing, Feedforward back-
propagation was used for these networks and the learning func-
tions were Bayesian Regularization for all. These networks were 
trained by entering the 11 variables (angular and linear measure-
ments) for the lateral photographs as input values for the net-
work while the output values were the 11 variables (angular and 
linear measurements) for the cephalometric radiographs. The 
percentage of training data was 70% of the total data selected 
randomly and the percentage for testing the network was 30% 
of the total data (testing new data that was never trained).

Statistical Analysis
Shapiro-Wilk test for data distribution showed a non-significant 
difference (P > .05) thus data were considered normally dis-
tributed. Data were subjected to statistical analysis using the 
Statistical Package for the Social Sciences, version 16.0 (SPSS 
Inc, Chicago, Ill, USA). Descriptive statistics were performed for 
each photographic and cephalometric variable for the skeletal 
measurements networks. Sexual dimorphism was evaluated by 
independent sample t-test. Intraclass correlation coefficients 
(ICCs) were estimated from repeated photographic measure-
ments and analysis of cephalometric and photographic variables 
to evaluate the repeatability and reproducibility of the method. 
Cephalometric measurements were compared with analogous 
photographic variables to assess Pearson correlation coeffi-
cients. Linear regression analyses were made after designing 
the networks for all networks between the targets (dependent 

Figure 2. Red indicators dots were placed on anatomic landmarks
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variable to be estimated) and actual outputs of cephalometric 
variables (independent variable). Levels of P < .05 were consid-
ered statistically significant.

RESULTS

The ICC to evaluate the reliabilities of the photographic tech-
nique and the analysis of the skeletal measurements on cephalo-
metric and lateral photos demonstrated excellent reliability with 
values ranged between 0.85 and 0.90.

The independent sample t-test showed no significant difference 
between male and female subjects except for the anterior and 
posterior facial height which were greater in males than females 
for all skeletal malocclusions in the cephalometric and facial 
photographs (Tables 1 and 2).

Highly significant correlations (P ≤ .001, r > 0.79) were found for 
most sagittal and vertical diagnostic variables with higher ver-
tical than sagittal measurements using the Pearson correlation 
coefficient.

Linear regression analysis was estimated for 70% of the col-
lected data (skeletal Class I, II, III malocclusion) after designing 
the neural network. It showed very high coefficients of corre-
lations between cephalometric radiographic variables of the 
actual output and the target during the training process (Figure 
3) (R = 0.999 during training part, R = 0.999 during testing part of 
training process, R = 0.999 as a whole). The best training perfor-
mance which means the least mean square error during training 
process was 0.20 337 at epoch 135 for Class I malocclusion, 0.35 
917 at epoch 78, 0.43 499 at epoch 111 for Class II and III maloc-
clusion respectively (Figure 4).

Following testing process, linear regression analysis was esti-
mated for the other 30% of the collected data after designing 
the neural network. It showed very high correlation coefficients 
between cephalometric radiographic variables of the output 
and the actual target (Figure 5) (R = 0.9991, R = 0.9998, and R = 
0.9987 for skeletal Class I, II, and III, respectively).

DISCUSSION

The cephalometric analysis creates the current gold standard 
for diagnosing different skeletal patterns in the clinical prac-
tice of orthodontists. However, the photographic assessment is 
a tremendous diagnosis tool for studies of epidemiology since 
there is no potentially harmful radiation and it is a cost-effective 
technique.5,16

The standardized technique of facial photography has several 
advantages for using as an alternative practical technique for the 
diagnosis of craniofacial morphology. It is easier to take measure-
ments without skin pressure-related errors since the subjects do 
not move and the interaction period is potentially shorter with 
the subject. Furthermore, longitudinal studies are applicable 
since measurements can be performed repeatedly, and stor-
ing of the data is permanent.3,17 Conversely, facial photographic 

technique has some drawbacks. The objects near the camera 
appear larger than those away from it due to distortion from the 
distance between the lens and the subject.3

Since most landmarks obtained from lateral photographs in 
the current study are at the midline, the effect of distortion is 
minimum because this effect is critical at the landmarks that are 
located in different planes of space.18 Moreover, most variables 
used in the current study were angular which partially over-
comes the problem of magnification.

Another source of error concerns is head posture, it must be the 
same during the recording protocol of radiographs and pho-
tographs. The landmarks’ location is greatly affected even by a 
slight deviation of the NHP and this causes changes in the results 
of the measurements.1 Additionally, mentalis muscle constric-
tion due to jaw opening may increase the estimate of error.19

One of the most important aspects of anthropometry studies is 
the reliability of measurement, which is the ability to obtain the 
same measurement consistently over sequential measures.20 
In the current study, most photographic measurements were 
performed based on palpation of anatomic points. It is impor-
tant to find the reliability in positioning the red dots without 
the interference of other source of error therefore a reproduc-
ibility test was conducted. Accurate establishment of land-
marks is crucial to ensure standardized photography protocol. 
Results of this study showed that method reproducibility was 
satisfactory.

Although the sample in this study had different skeletal patterns 
(Class I, II, and III malocclusions) generally, most cephalometric 
measurements showed no significant gender differences which 
explain the identical distribution into male and female sub-
groups. However, differences were found only for facial height 
anteriorly and posteriorly (AFH, LAFH, PFH) for photographs and 
cephalometric radiographs which were significantly higher in 
male subjects. This came in agreement with many studies which 
reported sexual dimorphism in most parameters of the chin, 
nasal, and labial areas. Ferrario et al.21 in 1993 mentioned that 
male faces show, on average, greater prominences of these areas 
as well as greater heights and lengths. Bishara et al.22 (1995) and 
Fernandez-Riveiro et al.23 (2009) had also reported significantly 
larger values for AFH, LAFH, and PFH in male subjects, which 
agrees with the findings of this study.

Highly significant correlations were found for most sagittal and 
vertical diagnostic variables. However, the highest coefficients 
were found between vertical variables as compared with sagittal 
variables. These findings agreed with the results of Gomes and 
coworkers in 2013.15

Good correlation coefficient was reported in this study between 
analogous photographic and cephalometric ANB angles (r =0.79, 
r = 0.79, r = 0.84 in Class I, II, and III malocclusions, respectively). 
These results agreed with the results of Staudt and Kiliaridis19 
in 2009 who mentioned that a predictable description of the 
underlying sagittal jaw relationship can be obtained from  
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Table 1. Gender difference for Cephalometric radiographic Measurements

Measurements Male subjects n = 14 Female subjects n = 16
t-test P SignificanceClass I Mean SD Min Max Mean SD Min Max

Sagittal 
assessment

 

Wits 0.50 0.41 −0.27 0.91 0.42 0.32 −0.05 0.94 0.619 .541 NS

ANB 3.33 0.65 2.00 4.00 3.50 0.89 2.00 5.00 −0.545 .590 NS

FNB 87.92 1.88 85.00 91.00 89.44 3.01 83.00 95.00 −1.536 .137 NS

N-ANS-Pog 167.25 4.25 161.00 174.00 164.88 6.70 153.00 173.00 1.074 .293 NS

N-ANS-B 164.83 4.71 157.00 171.00 161.81 6.99 150.00 172.00 1.291 .208 NS

Vertical 
assessment

 

Ar-Go-Me 130.50 8.02 123.00 146.00 129.63 6.38 120.00 142.00 0.322 .750 NS

FMA 28.17 6.90 20.00 41.00 26.69 6.18 17.00 37.00 0.596 .556 NS

OPA 9.42 3.37 4.00 15.00 9.88 4.03 4.00 17.00 −0.319 .752 NS

LAFH 16.49 0.78 15.66 18.28 15.29 0.85 14.07 16.83 3.816 .001 S
AFH 9.79 0.90 8.81 12.12 8.71 0.73 7.18 9.74 3.504 .002 S
LPFH 6.47 0.81 4.86 7.73 5.58 0.55 4.65 6.66 3.491 .002 S
Measurements Male subjects n = 14 Female subjects n = 20

t-test P SignificanceClass II Mean SD Min Max Mean SD Min Max
Sagittal 
assessment

 

Wits 1.14 0.58 0.43 2.56 1.10 0.43 0.37 2.03 0.275 .785 NS

ANB 7.29 2.20 5.00 12.00 7.16 1.49 5.00 10.00 0.212 .833 NS

FNB 87.43 3.27 81.00 93.00 87.28 2.56 83.00 92.00 0.157 .876 NS

N-ANS-Pog 160.21 6.53 147.00 169.00 160.52 4.80 153.00 171.00 −0.167 .868 NS

N-ANS-B 156.57 7.65 140.00 168.00 157.56 5.15 150.00 170.00 −0.482 .633 NS

Vertical 
assessment

 

Ar-Go-Me 128.43 10.12 114.00 146.00 128.40 6.66 116.00 143.00 0.011 .992 NS

FMA 25.71 10.10 12.00 44.00 27.88 5.21 21.00 42.00 −0.887 .381 NS

OPA 9.21 3.77 3.00 17.00 11.12 3.14 6.00 19.00 −1.692 .099 NS

LAFH 16.02 1.20 14.06 17.69 15.08 0.83 13.65 16.86 2.876 .007 S

AFH 9.29 1.29 7.57 11.37 8.52 0.61 7.23 9.79 2.528 .016 S

LPFH 6.24 0.54 5.35 7.28 5.61 0.57 4.75 6.84 3.401 .002 S

Measurements Male subjects n = 13 Female subjects n = 17
t-test P SignificanceClass III Mean SD Min Max Mean SD Min Max

Sagittal 
assessment

 

Wits 0.00 0.37 −0.68 0.66 0.03 0.39 −0.68 0.66 0.354 .726 NS

ANB 0.15 1.43 −5.00 1.00 −0.23 1.88 −5.00 1.00 −1.393 .176 NS

FNB 91.12 3.54 84.00 97.00 91.23 3.83 84.00 96.00 0.163 .872 NS

N-ANS-Pog 171.08 5.64 157.00 180.00 170.15 6.50 157.00 179.00 −0.829 .415 NS

N-ANS-B 169.19 5.78 154.00 179.00 168.69 6.66 154.00 179.00 −0.434 .668 NS

Vertical 
assessment

 

Ar-Go-Me 130.54 7.96 119.00 155.00 131.15 9.84 119.00 155.00 0.387 .702 NS

FMA 25.19 6.78 16.00 45.00 25.69 7.92 16.00 45.00 0.369 .715 NS

OPA 9.81 4.41 1.00 19.00 8.31 4.29 1.00 16.00 −1.812 .082 NS

LAFH 15.86 1.47 13.99 19.34 16.71 1.51 14.86 19.34 3.600 .001 S

AFH 9.01 1.22 7.14 11.76 9.65 1.18 8.26 11.76 3.098 .005 S

LPFH 6.35 0.74 4.89 7.75 6.81 0.62 6.02 7.75 4.079 .001 S
*Wits measurements indicates maxillomandibular linear discrepancy; ANB angle indicates maxillomandibular angular discrepancy; FNP angle indicates facial angle; 
N-ANS-Pog and N-ANS-B angles indicate angles of facial convexity. Ar-Go-Me angle indicates gonial angle; FMA angle indicates Frankfurt to mandibular plane 
angle; OPA angle indicates Frankfurt to occlusal plane angle; AFH indicates anterior facial height (N-Me); LAFH indicates lower anterior facial (ANS-Me) height; and 
LPFH indicates lower posterior facial height (Ar-Go); SD, standard deviation; Min, minimum; Max, maximum.
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Table 2. Gender difference for lateral photographic measurements

Measurements Male subjects n = 14 Female subjects n = 16
t-test P SignificanceClass I Mean SD Min Max Mean SD Min Max

Sagittal 
assessment

 

Wits 0.68 0.22 0.34 1.11 0.65 0.18 0.33 1.00 0.458 .651 NS

ANB 6.75 1.66 3.00 8.00 6.88 1.63 4.00 9.00 −0.199 .843 NS

FNB 88.42 2.68 84.00 93.00 89.25 2.65 83.00 92.00 −0.820 .419 NS

N-ANS-Pog 162.50 4.54 153.00 169.00 162.81 5.28 153.00 172.00 −0.164 .871 NS

N-ANS-B 160.75 4.37 156.00 168.00 159.81 5.66 150.00 171.00 0.476 .638 NS

Vertical 
assessment

 

Ar-Go-Me 130.08 8.32 121.00 146.00 128.63 6.24 119.00 143.00 0.531 .600 NS

FMA 28.42 7.06 22.00 43.00 25.63 6.08 16.00 35.00 1.123 .272 NS

OPA 9.67 3.03 5.00 15.00 9.81 4.02 4.00 17.00 −0.105 .917 NS

LAFH 13.00 0.62 12.23 14.49 12.14 0.55 11.26 13.25 3.886 .001 S

AFH 7.31 0.73 6.57 9.28 6.43 0.46 5.53 7.23 3.943 .001 S

LPFH 5.51 0.60 4.30 6.16 4.85 0.49 4.02 6.00 3.195 .004 S

Measurements Male subjects n = 14 Female subjects n = 20
t-test P SignificanceClass II Mean SD Min Max Mean SD Min Max

Sagittal 
assessment

 

Wits 1.30 0.51 0.69 2.55 1.10 0.38 0.52 2.03 1.360 .182 NS

ANB 10.14 1.75 7.00 13.00 9.68 1.57 7.00 13.00 0.847 .402 NS

FNB 86.86 3.63 81.00 93.00 87.40 2.27 83.00 92.00 −0.575 .569 NS

N-ANS-Pog 156.07 5.27 147.00 162.00 157.48 4.15 151.00 164.00 −0.922 .363 NS

N-ANS-B 152.86 6.02 140.00 164.00 154.68 4.22 148.00 163.00 −1.108 .275 NS

Vertical 
assessment

 

Ar-Go-Me 128.21 9.61 117.00 146.00 128.28 6.73 116.00 140.00 −0.025 .980 NS

FMA 25.43 9.24 12.00 40.00 27.28 5.37 17.00 41.00 −0.795 .432 NS

OPA 9.21 3.93 3.00 17.00 11.32 3.35 6.00 19.00 −1.770 .085 NS

LAFH 12.69 0.78 11.28 13.95 11.98 0.63 10.93 13.47 3.094 .004 S

AFH 6.82 0.67 5.60 7.86 6.38 0.45 5.42 7.26 2.452 .019 S

LPFH 5.53 0.43 4.89 6.16 4.90 0.59 3.75 6.00 3.502 .001 S

Measurements Male subjects n = 13 Female subjects n =17
t-test P SignificanceClass III Mean SD Min Max Mean SD Min Max

Sagittal 
assessment

 

Wits 0.46 0.36 −0.27 1.08 0.48 0.38 −0.21 1.08 0.212 .834 NS

ANB 4.46 1.82 −1.00 7.00 4.77 1.88 1.00 7.00 0.859 .399 NS

FNB 90.58 3.57 84.00 96.00 90.69 4.07 84.00 96.00 0.162 .873 NS

N-ANS-Pog 168.38 5.50 157.00 179.00 167.85 6.12 157.00 179.00 −0.492 .627 NS

N-ANS-B 165.19 5.17 154.00 179.00 165.08 5.50 154.00 179.00 −0.112 .912 NS

Vertical 
assessment

 

Ar-Go-Me 129.88 7.96 119.00 156.00 130.92 9.88 119.00 156.00 0.657 .517 NS

FMA 25.04 6.43 16.00 42.00 25.38 7.15 16.00 42.00 0.269 .790 NS

OPA 10.08 4.49 1.00 18.00 8.38 4.50 1.00 17.00 −2.040 .052 NS

LAFH 12.76 1.27 10.94 15.99 13.57 1.28 12.03 15.99 4.201 .000 S

AFH 6.92 0.96 5.45 9.27 7.53 0.88 6.48 9.27 4.120 .000 S

LPFH 5.50 0.70 4.22 6.99 5.93 0.56 5.01 6.99 3.980 .001 S
Wits’ measurement indicates soft-tissue maxillomandibular linear discrepancy; A’N’B’angle indicates soft tissue maxillomandibular angular discrepancy; FNP’angle 
indicates soft-tissue facial angle; N’-Sn-Pog’and N’-Sn-B’ angles indicate soft tissue angles of facial convexity for) Tr-Go’-Me’ angle indicates soft tissue gonial angle; 
FMA’ angle indicates soft tissue Frankfurt to mandibular plane angle; OPA’ angel indicates soft tissue Frankfurt to occlusal plane angle; AFH’ indicates soft tissue 
anterior facial height (N’-Me’); LAFH’ indicates soft tissue lower anterior facial height (Sn-Me’); and PFH’ indicates lower posterior facial height (Tr-Go’); SD, standard 
deviation; Min, minimum; Max, maximum.
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several soft tissue measurements (r = 0.80), on the other hand, 
Bittner and Pancherz6 in 1990 reported moderate correlations 
regarding these variables (r = 0.63) and this may related to the 
different in thickness of soft tissue in different age groups.

Regarding Wits variable, the findings of this study showed that (r 
= 0.80, r = 0.86, r = 0.77 in Class I, II, III malocclusions, respectively) 
and this agreed with the results of previous studies,15,16 which 
showed that Wits measurements of the soft tissue was signifi-
cantly correlated to the conventional Wits (r = 0.77, r = 0.73) and 

this may related to the accurate determination of the occlusal 
plane by using fox bite.

On the other hand, FNB, N-ANS-Pog, and N-ANS-B variables 
showed a good correlation and their values between 0.75 and 
0.85, and this may be related to the standardized position of the 
head for cephalometric and lateral photograph procedures.

Excellent correlation was found for vertical angular variables 
(0.90-0.95) this agreed with the results of previous studies.6,24 

Figure 3. Scatterplots illustrating linear regression results between the cephalometric radiographic variables of the target and the actual output 
between different skeletal patterns during the training process
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Other studies showed that the values of correlation ranged from 
0.80 to 0.85.15 Such difference might be related to individual vari-
ations in the inclination of the intracranial SN line.25

On comparing the vertical linear cephalometric and photo-
graphic variables for different skeletal malocclusion subjects, 
the results of this study showed that AFH, LAFH, and PFH have a 
good relationship with analogous photographic measurements. 
The comparison of these parameters was in conjunction with 
other studies.15,24 This may be related to the low effect of magni-
fication since these landmarks are located in midsagittal plane.

It cannot depend on the only photograph to represent the 
true measurement of cephalometric radiographs. A powerful  
prediction is essential to achieve a good correlation between 
cephalometric and photographic variables which can be 
obtained using ANNs.

Artificial neural networks represent great tools to match real tar-
gets by learning examples. These neural networks are able to find 
suitable information among initial data and establish a system for 
decision-making and results prediction. Such networks are made 
up of layers of neurons, typically an input layer, hidden or inter-
mediate layers (one or more), and an output layer. These layers 
are fully connected to each other’s. These layers are connected by 
synapses associated with numerical weightings. Repeated adjust-
ments of these weightings are crucial steps for feed-forward back 
propagation networks until there is little difference between the 
real targets and the actual outputs in a training environment.26

No study regarding cephalometric variables predictions from lat-
eral photographs between different skeletal patterns using ANNs 
was found in the literature review. Therefore, comparisons with 

similar studies in the literature are difficult to make. However, the 
present study showed another important application of ANNs in 
dentistry.

To verify the fitness of the model and to minimize overfitting, 
the samples were randomly divided into 70% of data for learn-
ing (PTrian = 0.7) and 30% for testing from the beginning in this 
study. In addition, the learning set was divided into the training 
set and the testing set and all set to make a generalized model. 
This has been described by Chang and Kim.27

A high degree of correlation between the real target and the 
actual output (R = 0.99) for each malocclusion was observed 
during the training and testing processes (Figures 3 and 5). The 
best training performance which means the least mean square 
error during the training process was 0.20 337 at epoch 135 for 
class I malocclusion, 0.35 917 at epoch 78, 0.43 499 at epoch 111 
for class II and III malocclusion respectively (Figure 4), this makes 
this method very accurate for prediction of cephalometric vari-
ables as compared with other conventional methods.

This study provides models of regression that can estimate the 
cephalometric variables through analogous photographic mea-
surements with a limited estimate error and a satisfactory pre-
dictive power. Further studies are recommended to evaluate the 
accuracy of such models.

The system constructed in this study showed high performance, 
however, some limitations should be mentioned. First, a large 
amount of data and good informatics skills were required dur-
ing the training phase.28 Secondly, frequent updating is required 
for models since they might change over time. Another relevant 

Figure 4. Best training performance for the network between the cephalometric radiographic variables of the target and the actual output for dif-
ferent skeletal patterns after designing the neural network during the training process
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problem in their training is occurred when the algorithm is exces-
sively custom-made to the training sample and it is called over-
fitting. Hence, it makes almost perfect predictions on it, but at 
the price of generalization, therefore its performance decreases 
on other populations. This issue can be solved by stopping the 
training when the error on the test set is at a minimum or subtle 
modifications to the training set.29

During the training, patterns that are not useful in real-life clinical 
practice might develop due to large amounts of low-quality data 
used and thus limiting the potential of classifiers.27 Generating 
models separately for each skeletal pattern may limit the gener-
alizability of the model, although there were successful results 
in all skeletal patterns, there may be a limitation to applying the 
test only to each skeletal pattern trained.

Figure 5. Scatterplot illustrating linear regression result between the cephalometric radiographic variables of the target and the actual output for 
different skeletal patterns after designing the neural network during the testing process
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Table 3. Correlation Coefficients Between Cephalometric Radiographs and Photographic Variables

Measurement Parameters of Class I All subjects n = 30 Male subjects n = 14 Female subjects n = 16

Cephalometric 
radiographs Photographs

Correlation 
coefficient p

Correlation 
coefficient p

Correlation 
coefficient p

Sagittal assessment
Wits Wits' 0.80 0.001 0.78 0.002 0.74 0.003
ANB A'N'B' 0.79 0.001 0.78 0.002 0.75 0.004
FNB FNB' 0.80 0.001 0.84 0.001 0.81 0.001
N-ANS-Pog N'-SN-Pog' 0.77 0.001 0.83 0.001 0.85 0.001
N-ANS-B N'-Sn-B' 0.87 0.001 0.71 0.010 0.84 0.001
Vertical assessment
Ar-Go-Me Tr-Go'-Me' 0.94 0.001 0.91 0.001 0.93 0.001
FMA FMA' 0.95 0.001 0.95 0.001 0.92 0.001
OPA OPA' 0.96 0.001 0.95 0.001 0.95 0.001
LAFH LAFH' 0.94 0.001 0.87 0.001 0.93 0.001
AFH AFH' 0.94 0.001 0.92 0.001 0.93 0.001
LPFH LPFH' 0.92 0.001 0.91 0.001 0.87 0.001

Measurement parameters of Class II All subjects n = 34 Male subjects n = 14 Female subjects n = 20

Cephalometric 
radiographs Photographs

Correlation 
coefficient p

Correlation 
coefficient p

Correlation 
coefficient p

Sagittal assessment

Wits Wits' 0.86 0.001 0.87 0.001 0.77 0.001
ANB A'N'B' 0.79 0.001 0.77 0.001 0.73 0.001
FNB FNB' 0.86 0.001 0.85 0.001 0.85 0.001
N-ANS-Pog N'-SN-Pog' 0.79 0.001 0.79 0.001 0.79 0.001
N-ANS-B N'-Sn-B' 0.79 0.001 0.81 0.001 0.76 0.001
Vertical assessment
Ar-Go-Me Tr-Go'-Me' 0.93 0.001 0.94 0.001 0.93 0.001
FMA FMA' 0.93 0.001 0.92 0.001 0.91 0.001
OPA OPA' 0.91 0.001 0.91 0.001 0.90 0.001
LAFH LAFH' 0.91 0.001 0.89 0.001 0.90 0.001
AFH AFH' 0.87 0.001 0.89 0.001 0.82 0.001
LPFH LPFH' 0.89 0.001 0.84 0.003 0.90 0.001

Measurement parameters of Class III All subjects n = 30 Male subjects n = 13 Female subjects n = 17

Cephalometric 
radiographs Photographs

Correlation 
coefficient p

Correlation 
coefficient p

Correlation 
coefficient p

Sagittal assessment

Wits Wits' 0.77 0.001 0.82 0.001 0.79 0.006
ANB A'N'B' 0.85 0.001 0.86 0.001 0.87 0.003
FNB FNB' 0.92 0.001 0.98 0.001 0.85 0.001
N-ANS-Pog N'-SN-Pog' 0.84 0.001 0.84 0.001 0.84 0.001
N-ANS-B N'-Sn-B' 0.74 0.001 0.74 0.004 0.75 0.003
Vertical assessment
Ar-Go-Me Tr-Go'-Me' 0.94 0.001 0.92 0.001 0.93 0.001
FMA FMA' 0.91 0.001 0.91 0.001 0.93 0.001
OPA OPA' 0.92 0.001 0.93 0.001 0.91 0.001
LAFH LAFH' 0.96 0.001 0.95 0.001 0.92 0.001
AFH AFH' 0.95 0.001 0.94 0.001 0.93 0.001

LPFH LPFH' 0.89 0.001 0.88 0.002 0.86 0.001

*Wits measurements indicates maxillomandibular linear discrepancy; ANB angle indicates maxillomandibular angular discrepancy; FNP angle indicates facial angle; 
N-ANS-Pog and N-ANS-B angles indicate angles of facial convexity. Ar.Go.Me angle indicates gonial angle; FMA angle indicates Frankfurt to mandibular plane angle; 
OPA angle indicates Frankfurt to occlusal plane angle; AFH indicates anterior facial height (N-Me); LAFH indicates lower anterior facial (ANS-Me) height; and LPFH 
indicates lower posterior facial height (Ar-Go). 

Wits’, linear discrepancy of the soft tissue between maxilla and mandible;  A’N’B’, angular discrepancy of the soft tissue between maxilla and mandible; FNP’, the 
soft-tissue facial angle; N’-Sn-Pog’; N’-Sn-B’, the soft tissue angles of the facial convexity. Tr-Go’-Me’, the soft tissue gonial angle; FMA’, soft tissue angle between 
Frankfurt and mandibular planes; OPA’, soft tissue angle between Frankfurt and occlusal planes; AFH’ (N’-Me’), soft tissue anterior facial height; LAFH’ (Sn-Me’), soft 
tissue lower anterior height of the face; LPFH’ (Tr-Go’), lower posterior height of the face for the soft tissue; SD, standard deviation; Min, minimum; Max, maximum.
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Despite these limitations, the results of the present study con-
firmed that ANNs are able to predict cephalometric variables to 
a clinically excellent level.

CONCLUSION

As a result of designing models for the prediction of cephalo-
metric variables via lateral photographs between different skel-
etal patterns with neural network machine learning, the results 
of this study suggest that ANNs could be a new and alternative 
approach for the cephalometric radiographs for measuring 
angular and linear variables.

In the near future, the increasing use of ANNs in orthodontic daily 
practice will probably continue. After adequate validation, these 
could potentially facilitate daily workflow, patient satisfaction, 
and correct interpretation of findings, leading to accurate safe 
method to improve patient outcomes without any radiation risk.
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